Triazole and multi-fungicide resistance in agricultural pathogens

Kerik Cox
Plant Pathology and Plant-Microbe Biology

One | Cornell University

New York State Agricultural Tree Fruit & Small Fruit Pathology
Experiment Station Research/Extension/Teaching 50/15/35

AgriTech

Cornell AgriTech

- Stakeholder-Driven Specialty Crop Research
- Field, Digital, and Molecular Laboratories > Achieve Transition to Practice

Antibiotic Resistance

Perennial fruit crops as model system for fungicide resistance

- Long-lived (> 5 years) & management periods for exceptionally long (> 6-7 months)
- Fruit pathogens have numerous secondary infection cycles > repeat treatments
- Localized populations w/ little influx of new members

Apple Scab (Venturia inaequalis) & Practical fungicide resistance

- Perennial problem & susceptible cultivars: favored by consumer and producer
- High input system (10+ fungicide applications/year) & resistance reported in most fungicide classes
- <u>Practical Resistance</u>: pathogen population is sufficiently resistant > results in management failure even under appropriate-use practices

Phases of fungicide resistance development

1. Emergence*

2. Establishment

*Fungicides are not inherently mutagenic, mutations are **pre-existing** *Advantageous mutations occur

infrequently

Application of a fungicide does not cause emergence, rather may select for establishment

Pathogen Population

- Sensitive Isolate
- Resistant Isolate

Determining practical fungicide resistance

- Statistical test to compare the distribution of phenotype responses from the test population to that of a reference distribution
- Reference standards: Confirm proper application practice & level of disease incidence following product use

121 apple orchard populations

Cross & Multiple Fungicide Resistance

- Cross-resistance resistance to multiple fungicides that share the same biochemical mode of action or target site
- Multiple resistance —resistance development to two or more unrelated fungicide classes resulting from sequential selection or multi-drug resistant mechanism

Fungicide Rotation w/ single-resistance > Multiple Resistance

Isolates from managed populations > super isolates w/ multiple-resistance

Isolates from managed populations > super isolates w/ multiple-resistance

Resistance extended to multiple classes of fungicides

No mutations in target genes detected

Investigating multidrug resistance mechanisms

Genomics of isolates with multiple resistance

Isolate Name	ID: 10.3.14	ID: 6.31.13	ID: 12.2.13	ID: 2.42.14
Fungicide	Baseline	DMI	DMI/dodine	DMI/dodine/Qol
Phenotype	sensitive	resistant	Resistant	resistant
Genome Size (Mb)	39	48	61	44
Scaffolds	3303	7555	6920	619
N50	26689	35520	36116	221483
UniProt	601	576	581	774
CAZyme	346	350	346	396
BUSCO	95.74%	96.34%	96.73%	97.49%
Pfam	11441	11477	11562	14903
Transposable	48	71	71	153
elements				

- Dynamic genome size [39-61Mb] > from non-coding regions
- Transposable element numbers in coding sequences increase with fungicide resistance phenotype

Summary & Takeaways

- Tree fruit: long-lived, receive multiple treatments, exposed to pathogen in comprising environments
 - C. auris: not found as an epiphyte in apple & stone fruit
- Fungicide resistance: population size affects risk of emergence & reduced time to selection > practical resistance
- Development of Multi-fungicide Resistance:
 - Using a fungicide on a population with resistance
 - May drag isolates w/ resistance to other chemistries
 - Continual fungicide exposure (regardless of the class)

Acknowledgements & funding sources

2019 Graduate Students Undergraduates, & Technicians

Katrin Ayer Anna Wallis David Strickland Stephanie Smart Jamie Spychalla John Spafford April Moffett Matthew Siemon Mei Wah Choi

